首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   121333篇
  免费   13079篇
  国内免费   6832篇
电工技术   10866篇
技术理论   6篇
综合类   9358篇
化学工业   18092篇
金属工艺   11883篇
机械仪表   6848篇
建筑科学   11494篇
矿业工程   4788篇
能源动力   5267篇
轻工业   9667篇
水利工程   3297篇
石油天然气   6846篇
武器工业   1263篇
无线电   11797篇
一般工业技术   12587篇
冶金工业   8709篇
原子能技术   1849篇
自动化技术   6627篇
  2024年   254篇
  2023年   1696篇
  2022年   3196篇
  2021年   3992篇
  2020年   4250篇
  2019年   3559篇
  2018年   3382篇
  2017年   4293篇
  2016年   4684篇
  2015年   4861篇
  2014年   7611篇
  2013年   7189篇
  2012年   9219篇
  2011年   9557篇
  2010年   6677篇
  2009年   7010篇
  2008年   6280篇
  2007年   8121篇
  2006年   7401篇
  2005年   6135篇
  2004年   5282篇
  2003年   4618篇
  2002年   3960篇
  2001年   3476篇
  2000年   2778篇
  1999年   2275篇
  1998年   1741篇
  1997年   1401篇
  1996年   1285篇
  1995年   1023篇
  1994年   865篇
  1993年   593篇
  1992年   533篇
  1991年   453篇
  1990年   350篇
  1989年   265篇
  1988年   189篇
  1987年   124篇
  1986年   104篇
  1985年   101篇
  1984年   92篇
  1983年   65篇
  1982年   81篇
  1981年   36篇
  1980年   45篇
  1979年   19篇
  1975年   10篇
  1964年   10篇
  1959年   21篇
  1951年   10篇
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
41.
《Ceramics International》2021,47(24):34869-34880
This work complements an initial study regarding the mechanical behavior of MgO–C bricks at 1000 °C. In this case, two bricks bonded with phenolic resin, one of them containing aluminum, were treated at 600 °C and mechanically tested at RT and 600 °C. The thermal treatments attempt to simulate the in-service steelmaking ladle preheating process. At low temperatures, the binder pyrolysis is one of the main transformations and the Al melting neither its chemical reactions occur on a large scale yet. To evaluate the effects as the pyrolysis progresses, the soaking time at 600 °C was varied from 1 to 3 h. Although without significant chemical activity, the presence of Al affected the mechanical behavior of the tested bricks. The consolidation of the C–C network coming from the binder pyrolysis was identified as the main factor responsible for counterbalancing the material's degradation by microcracking. The heating combined with the low compressive pre-load applied on the tested specimens appears to close the microcracks and pores.  相似文献   
42.
Recent advancements in isolation and stacking of layered van der Waals materials have created an unprecedented paradigm for demonstrating varieties of 2D quantum materials. Rationally designed van der Waals heterostructures composed of monolayer transition-metal dichalcogenides (TMDs) and few-layer hBN show several unique optoelectronic features driven by correlations. However, entangled superradiant excitonic species in such systems have not been observed before. In this report, it is demonstrated that strong suppression of phonon population at low temperature results in a formation of a coherent excitonic-dipoles ensemble in the heterostructure, and the collective oscillation of those dipoles stimulates a robust phase synchronized ultra-narrow band superradiant emission even at extremely low pumping intensity. Such emitters are in high demand for a multitude of applications, including fundamental research on many-body correlations and other state-of-the-art technologies. This timely demonstration paves the way for further exploration of ultralow-threshold quantum-emitting devices with unmatched design freedom and spectral tunability.  相似文献   
43.
Monitoring the temperature in liquid hydrogen (LH2) storage tanks on ships is important for the safety of maritime navigation. In addition, accurate temperature measurement is also required for commercial transactions. Temperature and pressure define the density of liquid hydrogen, which is directly linked to trading interests. In this study, we developed and tested a liquid hydrogen temperature monitoring system that uses platinum resistance sensors with a nominal electrical resistance of approximately 1000 Ω at room temperature, PT-1000, for marine applications. The temperature measurements were carried out using a newly developed temperature monitoring system under different pressure conditions. The measured values are compared with a calibrated reference PT-1000 resistance thermometer. We confirm a measurement accuracy of ±50 mK in a pressure range of 0.1 MPa–0.5 MPa.  相似文献   
44.
How to improve the sensitivity of the temperature-sensing luminescent materials is one of the most important objects currently. In this work, to obtain high sensitivity and learn the corresponding mechanism, the rare earth (RE) ions doped Y4.67Si3O13 (YS) phosphors were developed by solid-state reaction. The phase purity, structure, morphology and luminescence characteristics were evaluated by XRD, TEM, emission spectra, etc. The change of the optical bandgaps between the host and RE-doped phosphors was found, agreeing with the calculation results based on density-functional theory. The temperature-dependence of the upconversion (UC) luminescence revealed that a linear relationship exists between the fluorescence intensity ratio of Ho3+ and temperature. The theoretical resolution was evaluated. High absolute (0.083 K−1) and relative (3.53% K−1 at 293 K) sensitivities have been gained in the YS:1%Ho3+, 10%Yb3+. The effect of the Yb3+ doping concentration and pump power on the sensitivities was discussed. The pump-power–dependence of the UC luminescence indicated the main mechanism for high sensitivities in the YS:1%Ho3+, 10%Yb3+. Moreover, the decay-lifetime based temperature sensing was also evaluated. The above results imply that the present phosphors could be promising candidates for temperature sensors, and the proposed strategies are instructive in exploring other new temperature sensing luminescent materials.  相似文献   
45.
Mechanical systems are always suffering from the effects of temperature dependent friction forces where the system is operated in a wide range of temperature. Temperature and its variation play an important role in friction force in mechanical systems. If it is not compensated, it will tend to unwanted consequences, including steady‐state errors, limit cycling, and hunting. Therefore, it is necessary to take the temperature effects into account. This has been a strong motivation for the researchers to work on temperature effects on joint friction. In this paper, an adaptive compensation (control) scheme is proposed and applied to a 2‐degree‐of‐freedom serial robot manipulator by taking the temperature effects into account on the joints friction. In the proposed control scheme, the temperature is not required to be sensed. In this paper, joint friction is described by LuGre dynamic model with temperature dependent parameters. These parameters are described by some functions with unknown temperature dependent terms. According to the mathematical and practical concepts, the temperature dependent friction is decomposed into a viscous term and a disturbance term. An adaptive controller is designed to compensate the friction effect and it is shown that the proposed controller relaxes the condition for a priori knowledge about the environment characteristics, including the upper and lower bounds of the environment temperature and the parameters of the functions, describing the temperature dependent joint frictions. The stability and convergence of the joint position and velocity are proved in the sense of Lyapunov and then the proposed method is confirmed by the simulations.  相似文献   
46.
In this study, 30 subjects were exposed to different combinations of air temperature (Ta: 24, 27, and 30°C) and CO2 level (8000, 10 000, and 12 000 ppm) in a high-humidity (RH: 85%) underground climate chamber. Subjective assessments, physiological responses, and cognitive performance were investigated. The results showed that as compared with exposure to Ta = 24°C, exposure to 30°C at all CO2 levels caused subjects to feel uncomfortably warm and experience stronger odor intensity, while increased mental effort and greater intensity of acute health symptoms were reported. However, no significant effects of Ta on task performance or physiological responses were found. This indicated that subjects had to exert more effort to maintain their performance in an uncomfortably warm environment. Increasing CO2 from 8000 to 12 000 ppm at all Ta caused subjects to report higher rates of headache, fatigue, agitation, and feeling depressed, although the results were statistically significant only at 24 and 27°C. The text typing performance and systolic blood pressure (SBP) decreased significantly at this exposure, whereas diastolic blood pressure (DBP) and thermal discomfort increased significantly. These effects suggest higher arousal/stress. No significant interaction effect of Ta and CO2 concentration on human responses was identified.  相似文献   
47.
针对钢制导热油烘缸在工作时出现工作表面温度分布不均匀、温差大等情况,采用三维建模和模拟仿真方法对钢制导热油烘缸的结构进行优化。本研究主要从3个方面对钢制导热油烘缸进行结构改进,分别是改变循环油路通道数量,改变进油槽与出油槽上孔的排列方式,改变循环油路的结构。研究结果表明,相对其他烘缸结构,具有循环油路通道数量为20个、进油槽与出油槽上孔为单排排列、循环油路两两相通的钢制导热油烘缸的性能更好,可以达到工作表面温度分布均匀、温差控制在±5℃以内的目的。  相似文献   
48.
为了生产优良食味稻米,克服栽培环境的影响非常重要。主要论述了灌浆期最适宜的用水管理、新鲜稻谷的干燥温度以及糙米水分含量与其食味之间的关系。水稻灌浆期最适宜的用水管理是湿润管理法,通过对灌浆期水稻的湿润管理,可有效抑制水田土壤温度上升,保持根系活力,提高稻米结实率,最终实现稻米增收与食味提升。新鲜稻谷水分含量不同,干燥所需的送风温度也不同,22%、25%、30%的水分含量分别对应的适宜温度为55、48、35℃。糙米中14%~15%的水分含量能够保证稻米的最佳食味。  相似文献   
49.
The mechanical behavior of ZrB2-MoSi2 ceramics made of ZrB2 powder with three different particle sizes and MoSi2 additions from 5 to 70 vol% was characterized up to 1500 °C. Microhardness (12–17 GPa), Young’s modulus (450–540 GPa) and shear modulus (190–240 GPa) decreased with both increasing MoSi2 content and with decreasing ZrB2 grain size. Room temperature fracture toughness was unaffected by grain size or silicide content, whilst at 1500 °C in air it increased with MoSi2 and ZrB2 grain size, from 4.1 to 8.7 MPa m½. Room temperature strength did not trend with MoSi2 content, but increased with decreasing ZrB2 grain size from 440 to 590 MPa for the largest starting particle size to 700–800 MPa for the finest due to the decreasing size of surface grain pullout. At 1500 °C, flexure strength for ZrB2 with MoSi2 contents above 25 vol% were roughly constant, 400–450 MPa, whilst for lower content strength was controlled by oxidation damages. Strength for compositions made using fine and medium ZrB2 powders increased with increasing MoSi2 content, 250–450 MPa. Ceramics made with coarse ZrB2 displayed the highest strengths, which decreased with increasing MoSi2 content from 600 to 450 MPa.  相似文献   
50.
Thermosetting materials are widely used as encapsulation in the electrical packaging to protect the core electronic components from external force, moisture, dust, and other factors. However, the spreading and curing behaviors of such kind of fluid on a heated surface have been rarely explored. In this study, we experimentally and numerically investigated the spreading and curing behaviors of the silicone(OE6550 A/B, which is widely used in the light-emitting diode packaging) droplet with diameter of ~2.2 mm on a heated surface with temperature ranging from 25 ℃ to 250 ℃. For the experiments, we established a setup with high-speed camera and heating unit to capture the fast spreading process of the silicone droplet on the heated surface. For the numerical simulation, we built a viscosity model of the silicone by using the Kiuna's model and combined the viscosity model with the Volume of Fluid(VOF) model by the User Defined Function(UDF) method. The results show that the surface temperature significantly affected the spreading behaviors of the silicone droplet since it determines the temperature and viscosity distribution inside the droplet. For surface temperature varied from 25 ℃ to 250 ℃, the final contact radius changed from ~2.95 mm to ~1.78 mm and the total spreading time changed from ~511 s to ~0.15 s. By further analyzing the viscosity evolution of the droplet, we found that the decreasing of the total spreading time was caused by the decrease of the viscosity under high surface temperature at initial spreading stage, while the reduction of the final contact radius was caused by the curing of the precursor film. This study supplies a strategy to tuning the spreading and curing behavior of silicone by imposing high surface temperature, which is of great importance to the electronic packaging.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号